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SUMMARY

The movements an organismmakes provide insights into its internal states and motives. This principle is the
foundation of the new field of computational ethology, which links rich automatic measurements of natural
behaviors to motivational states and neural activity. Computational ethology has proven transformative for
animal behavioral neuroscience. This success raises the question of whether rich automatic measurements
of behavior can similarly drive progress in human neuroscience and psychology. New technologies for
capturing and analyzing complex behaviors in real and virtual environments enable us to probe the human
brain during naturalistic dynamic interactions with the environment that so far were beyond experimental
investigation. Inspired by nonhuman computational ethology, we explore how these new tools can be
used to test important questions in human neuroscience. We argue that application of this methodology
will help human neuroscience and psychology extend limited behavioral measurements such as reaction
time and accuracy, permit novel insights into how the human brain produces behavior, and ultimately reduce
the growing measurement gap between human and animal neuroscience.
INTRODUCTION

In the natural world, animals modify their behavior in response to

changes in their environment, such as predation and competi-

tion, as well as changes in their internal metabolic drives (e.g.,

hunger and thirst; LeDoux, 2012; Mobbs et al., 2018). These

observable behaviors can range from deliberately controlled to

impulsive or reactive but are consistent in that they provide infor-

mation about the animal’s latent motivational state and reflect

strategic responses to a variety of survival demands. Measuring

these unconstrained and seemingly random behaviors in exten-

sive datasets has been a major challenge for behavioral neuro-

scientists. However, in non-human studies, machine learning

methods that automate the registration and analysis of locomo-

tor activity on the basis of video have given us much richer mea-

surements of behavior. By better characterizing the behavioral

motifs (see Box 1) of animals, a deeper understanding of the neu-

ral circuits involved in a rich variety of survival behaviors can be

achieved (Anderson and Perona, 2014; Datta et al., 2019). This

computational enhancement of behavioral observation has

created the new field of computational ethology. Its methods
appear to be equally pertinent to humans and animals. However,

thesemethods have yet to develop their full effect on human psy-

chology and human neuroscience.

Here, we explore the promises and challenges of applying the

methods of computational ethology to human neuroscience. We

focus on the fields of human decision and social and affective

neuroscience and discuss ways in which experimental paradigms

canbedesigned to evoke awide range of natural defensive, appe-

titive, and social behaviors. We detail current and potential future

methods, focusing on increased use of virtual ecologies to probe

behavioral motifs and their underlying computations. This poten-

tial shift in approach to human neuroscience parallels recent calls

from the field of comparative neuroscience, where there is a need

for more effective probing of behavior (Anderson and Perona,

2014; Datta et al., 2019). In turn, this will provide better models

of how the brain produces behaviors (Babayan and Konen,

2019; Niv, 2020; Krakauer et al., 2017). As we argue throughout

this review, if our goal is ultimately to explain real-world behavior,

wewill need to study naturalistic behavior and its neural underpin-

nings. Such an approach will (1) allow detection of naturalistic

behavioral patterns that are hidden in traditional, constrained
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Box 1. Glossary

Behavioral motif. A unit of organized movement often used interchangeably with the terms ‘‘motif,’’ ‘‘movement,’’ ‘‘module,’’

‘‘primitive,’’ and ‘‘syllable’’ (Datta et al., 2019; Anderson and Perona, 2014).

Dimensionality. The number of variables in a dataset (also see ‘‘Dimensionality reduction’’; Datta et al., 2019).

Ethogram. A repeatable and predefined set of movements that are learned or hard-wired. These include such things as thigmo-

taxis (see below), approach, and pauses.

Machine learning (ML). Where computers are programmed to learn without explicit instructions, providing accurate predictions

based on labeled or unlabeled training data. Using a variety of mathematical models, including support vector machines or deep

neural networks, a dataset is first used to train the algorithms.When the algorithm is trained, it is then tested on a test dataset. In the

case of human behavior, ML can be used to detect and categorize human and animal behavioral motifs using what has been called

an ‘‘action classifier.’’

Model-based (MB) inference and decision-making. Inferences and decisions based on an internal model of the world. MB

methods exploit a (possibly learned) model of the environment to prospectively calculate the likely consequences of actions,

for instance, by simulating possible future states.

Model-free (MF) inference and decision-making. The agent learns what to do to maximize long-run return or learns value es-

timates of those long-run returns. MF methods acquire values by a bootstrapping process of enforcing consistency between suc-

cessive estimates.

Protean escape.Unpredictable escape trajectories, such as zigzagging, that prevent a predator anticipating the future position or

actions of its prey.

Temporal dynamics. How behavior features change over time.

Trajectory. The movement of the agent through time and space.

Thigmotaxis. A measure of anxiety where animals stay close to walls rather than maneuvering in open spaces.

Virtual ecology. Self-contained virtual environments where subjects can move freely throughout the environment.

For more definitions, see Anderson and Perona (2014) and Datta et al. (2019).
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experimental paradigms; (2) characterize neural systems support-

ing spontaneous, naturalistic behavior; and (3) determine how

cognitive processes (e.g., decision-making) unfold in complex,

naturalistic scenarios. So far, computational ethology has led to

a range of novel computationally identified behaviors and their

associated neural basis being cataloged in rodents and

Drosophila. These include behaviors that reflect appetitive, social,

and defensive behaviors (Box 1; Anderson and Perona 2014) that,

up until now, were frequently passed off as noise, being too fast

and too stochastic to measure. But neither these challenges nor

their emerging solutions are unique to animal research. We

contend that computational ethologymethods will also prove crit-

ical for the progress of human neuroscience.

Non-human computational ethology
Description and analysis of animal behavior has traditionally

relied on human observation and recording. In recent years,

however, the development of modern recording and analysis

methods has facilitated the emergence of computational

ethology (Anderson and Perona, 2014; Datta et al., 2019),

which uses machine learning methods to automatically identify

and quantify behavior, obviating the need for human observers.

In lab settings, these approaches typically take data acquired

from video cameras positioned around one or more animals

and put out a continuous representation of the animal’s loca-

tion or pose, for example, by recording limb or head position.

This circumvents the subjectivity of human observations and

promises observations higher in precision and quality, being

unaffected by human visual and attentional capacity. Perhaps

most importantly, computational ethology provides a dramatic

increase in throughput, the benefits of which have been felt
2 Neuron 109, July 21, 2021
most strongly in fields that depend on high-frequency observa-

tions from large numbers of animals, such as those examining

the roles of specific neural circuits in Drosophila (Hoopfer

et al., 2015).

Although a new field, computational ethology has already

demonstrated its utility across a range of studies. In Drosophila,

these methods have allowed identification of neural circuits un-

derlying distinct sensorimotor states (Calhoun et al., 2019), and

combining computational ethology with optogenetics has

enabled causal links between neural circuits and specific behav-

iors to be tested (Jovanic et al., 2016). Recently, the combination

of automated classification of behavior with high-throughput

neural recordings from rodents has revealed distributed patterns

of neural activity regarded previously as noise to be associated

with specific behavioral patterns (Musall et al., 2019; Stringer

et al., 2019), a discovery with obvious relevance to ‘‘noisy’’ hu-

man neuroimaging.

Computational ethology has been a major beneficiary of de-

velopments in machine vision, which allows streams of video

data to be mined automatically for behaviors of interest. This

is not a trivial task. First, it is essential to continuously detect

and monitor unique animals without confusing separate individ-

uals. Second, animal features that constitute specific behaviors

must be extracted and tracked accurately. Although simply

tracking an animal’s location and direction of movement will

be sufficient to answer many questions, a behavioral pheno-

type often depends on more complex features of the animal’s

actions. These may be subtle, for example, based on pose or

specific limb movements. Finally, classification of behaviors

based on these features must be accurate. This process is ap-

proached in a supervised way (Graving et al., 2019; Mathis
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et al., 2018; Pereira et al., 2019), where an experimenter manu-

ally identifies the features of the animal that should be tracked,

or an unsupervised way (Berman et al., 2014; Wiltschko et al.,

2015), where features of interest are identified without human

intervention.

The number of tools developed for this purpose has increased

dramatically over the past decade, boosted by the growth of

deep learning. Experimental setups used in computational

ethology represent the kind of nonlinear many-to-many classifi-

cation problem (where many features must be mapped to many

categories) at which neural networks excel, and their use has

enabled automatic identification and classification of behavioral

features previously limited to human observation. These

methods have evolved from algorithms designed to detect hu-

man poses (Insafutdinov et al., 2016) and have been made

possible through transfer learning (Donahue et al., 2013), which

takes advantage of pre-trained neural networks to facilitate per-

formance without the need for extensive training data from the

task at hand. Notable examples here are those that have been

able to identify animal body and limb positions (Graving et al.,

2019; Mathis et al., 2018), enabling automatic evaluation of

movements and pose and classification of behaviors based on

these. The result of this is that continuous video recordings of

naturalistic animal behavior can be processed automatically,

producing detailed ethograms representing how behavior un-

folds over time.

In both human and non-human research, we face the chal-

lenge of understanding how complex high-dimensional behav-

iors are generated by neural systems. Computational ethology

naturally lends itself to this problem. First, computational

methods allow fine-grained assessment of behavior that ac-

counts for its temporal dynamics. Importantly, this permits the

dynamics of behavior to be linked to unfolding neural activity,

potentially elucidating time-dependent neural processes under-

lying behavior. Second, computational ethology allows detailed

quantification of free, naturalistic movements, making it possible

to link neural processes to behavior without the need for highly

controlled, unrealistic tasks.

Human computational ethology
It has been argued recently (e.g., Babayan andKonen, 2019; Bal-

leine, 2019; Niv, 2020) that behavior is essential for understand-

ing the animal brain, including the human brain. The continuous

measurement of behavior that characterizes computational

ethology may add to existing measures of behavior, including

categorical decisions that are common to most experiments in

human cognitive neuroscience (Figures 1A–1J). It is not, howev-

er, obvious how to best integrate computational ethological ap-

proaches into traditional paradigms in human neuroscience.

Consider, for example, the study of human fear and anxiety.

Traditional approaches include fear conditioning and presenta-

tion of visually aversive stimuli (e.g., fearful faces). These studies

provide no clear path to the approaches advocated by computa-

tional ethology because these paradigms minimize behavioral

dynamics (e.g., binary button presses), in contrast with the rich

behavioral outputs that are central to animal computational

ethology. However, new experimental paradigms have begun

to engage subjects in dynamic interactions, typically in virtual en-
vironments. One of the first studies to move beyond classic fear

conditioning paradigms used virtual predators to create an

active escape task. Although simple, the task involved subjects

actively escaping from an attacking virtual predator in a 2Dmaze

that allowed the subjects to visually keep track of the distance to

the predator and providing richer behavior than typical for these

tasks (Mobbs et al., 2007). Distance, therefore, could be para-

metrically coupled with blood-oxygen-level-dependent (BOLD)

signal measurements taken from fMRI, permitting identification

of neural circuits involved in processing proximal and distal

threats. This approach was later used and extended by showing

that panic-related motor errors correlated with brain areas

commonly implicated in human and animal models of panic

(Figure 1B; Box 1; wrong button presses resulting in collisions

with the virtual walls of the maze; Mobbs et al., 2009). Despite

the promise of these early studies, more causal research is

needed, and computational ethology may be one direction that

can address the shortfalls of previous empirical work.

These experiments were followed by several studies using

similar paradigms (Bach et al., 2014; Gold et al., 2015; Meyer

et al., 2019). For example, Bach et al. (2014) examined the role

of the human hippocampus in arbitrating approach-avoidance

conflict under different levels of potential threat. Subjects were

instructed tomove a green triangle around a 2D gridded environ-

ment to collect tokens (exchanged for money), where one of

three different dangerous predators was located in a corner of

the grid. At any time, the predator could begin to chase the sub-

ject, but the subject could also choose to hide in a safe place (a

black box in the corner of the grid). When caught, the subject lost

all tokens, and the epoch was over. This task was able to mea-

sure several variables, including time spent in the safe place,

time spent close to the walls, and distance from the threat

(Bach et al., 2014; Figure 1E). In another study, Gold et al.

(2015) created a task in which subjects were asked to capture

prey and evade predators in a 2D maze, similar to previous

studies (Bach et al., 2014; Mobbs et al., 2007, 2009). The main

result showed that, when a threat was unpredictable, there

was increased connectivity between the amygdala and ventro-

medial prefrontal cortex (vmPFC) (Gold et al., 2015).

Although these studies did not take full advantage of the

movement trajectories of the virtual environment or apply unsu-

pervisedmachine learning, they do provide a template for how to

apply computational ethology to human neuroscience. They also

highlight the advantages of using less restricted behavioral mea-

sures than common in human neuroscience to reveal behavioral

and neural patterns that would not be observable otherwise.

Creation of such virtual ecologies enables experimentalists to

measure less constrained types of behavior (Figure 1).

Examples of novel behavioral assays in humans
The standard behavioral measures used in laboratory tasks are

decision accuracy and reaction time (RT). RT is often used as a

marker of decision confidence, deliberation, and learning. How-

ever, although it does not undermine the importance of RT, it can

be problematic because latencies in RT can arise because of

many factors, including those of little interest to the experi-

menter, such as tiredness and distraction. The additional mea-

sures of behavioral motifs and sequences help minimize these
Neuron 109, July 21, 2021 3
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Figure 1. Examples of defensive, avoidance, and appetitive behaviors
(A) Thigmotaxis as a measure of avoidance.
(B) Intermittent locomotion as a measure of cautiousness.
(C) Place aversion.
(D) Escape measures include panic-related errors that reflect motor errors when being pursued by a virtual predator (Mobbs et al., 2009).
(E) Example of an approach/avoidance task used by Bach et al. (2014).
(F) Impulsive behaviors such as overshooting the reward (Mobbs et al., 2009).
(G) Cutting off behaviors, where the area under the curve can be measured to examine attack success.
(H) Feinting is a way of tricking the prey into moving into the direction the predator wishes them to move.
(I) Example of path integration and prediction of prey movement during an appetitive movement task (Yoo et al., 2020).
(J) Place preference can be measured by measuring the subject’s time in specific positions of the virtual ecology.
(K) A hypothetical example of how software tracks behavior over time to produce detailed ethograms.

ll
Perspective

Please cite this article in press as: Mobbs et al., Promises and challenges of human computational ethology, Neuron (2021), https://doi.org/10.1016/
j.neuron.2021.05.021
potentially confounding effects. In many tasks, decision accu-

racy is also used as a measure of learning (see Neuron’s special

issue on behavior from October 2019), which encourages deci-

sion-making paradigms to depend on infrequent decisions be-

tween a limited set of options to provide clearly delineated op-

portunities for learning to occur. Dynamic measurement of

complex behaviors replaces the RTs and accuracies of a

discrete sequence of actions by an essentially continuous

stream of motor control signals and performance measures.

This, in turn, provides an excellent way to examine between-sub-

ject differences in behavior. Moving beyond the standard proto-

cols, paradigms have been developed based on simple 2D envi-

ronments or virtual ecologies that can capturemultiple measures

of threat anticipation, escape, and conflict (Figure 1A). Virtual

ecologies canmove one step closer to the real world by including

levels of threat imminence, visually clear versus opaque environ-

ments (e.g., forest versus open field), and changes in competi-

tion density (Mobbs et al., 2013; Silston et al., 2020). This
4 Neuron 109, July 21, 2021
approach provides the experimentalist not only with tools to

question how the environment changes decision processes

but also how it affects locomotor activity. Indeed, in the real

world, behaviors can be fluid, stilted, fleeting, and subtle. Below,

we give examples of several types of behavior that can be

measured using virtual ecologies.

Anticipation of danger

Anticipation of danger is a critical part of anxiety, which is typi-

cally defined as a future-oriented emotional state associated

with ‘‘potential’’ and ‘‘uncertain’’ threats (Grupe and Nitschke,

2013). One classic measure observed by ethologists and behav-

ioral neuroscientists is thigmotaxis (Box 1), an index of anxiety

typically associated with the animal moving to the peripheral

area of an open field. Thigmotaxis is observed in rodents, fish,

and humans (Walz et al., 2016). Other anxiety-like behaviors

include intermittent locomotion (i.e., movement pauses) when

a threat is anticipated. Place aversion, a form of Pavlovian con-

ditioning, is also possible in virtual ecologies, where avoidance of
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particular areas of the environment demonstrates aversion (e.g.,

a predator was encountered in the location). Another approach

taken from the field of behavioral ecology is the concept of

margin of safety, when prey adopts choices that prevent deadly

outcomes from occurring by keeping close proximity to a safety

refuge and increasing the success of escape (Cooper et al.,

2015; Qi et al., 2020). Finally, potential threats lead to vigilance

behaviors, including orienting toward and attending to threat,

both in non-human species and in humans (Mobbs and Kim,

2015; Wise et al., 2019).

We do not wish to argue that the results of traditional, non-

naturalistic tasks are incorrect or entirely invalid. Their ability

to break down complex behaviors into their constituent parts

has provided substantial insight into the basic processes gov-

erning behavior. However, we do argue that a reductionist

approach limits their ability to explain naturalistic behavior as

a whole. Taking fear conditioning as an example, we now

have a rich understanding of the specifics of how humans ac-

quire and lose fears of stimuli linked to aversive outcomes in

the lab. However, typical fear conditioning experiments involve

repeated, contiguous pairing of unconditioned and conditioned

stimuli to engender learning. In the real world, such clean

learning experiences are the exception rather than the norm.

For example, a student may become fearful of exams after

receiving a poor grade on a single exam taken weeks previ-

ously without needing repeated experiences of taking exams

and receiving immediate negative feedback. In terms of behav-

ioral output, traditional tasks fail to capture the complexity of

human behavior. Fear conditioning studies may require sub-

jects to provide an expectancy rating or, in some tasks, may

require binary stimulus selection. In the real world, our behav-

iors in response to feared stimuli are far more varied and com-

plex, but traditional fear-conditioning paradigms tell us little

about how acquired fears influence these behaviors. This gap

between lab-based fear conditioning and real-world fear has

been described previously as a barrier to successful treatment

of pathological fears (Scheveneels et al., 2016).

Escape behaviors

Escape is associated with fear and is elicited during predatory

attack (Mobbs et al., 2020). Escape differs from avoidance in

that escape is driven by themoment-to-moment adjustedmove-

ments of the attacking predator. Behaviorally, escape is associ-

atedwith ballistic movements and increased vigor and is less co-

ordinated than avoidance. This also results in protean escape,

which is driven by the trajectory of the predator’s attack and

often results in unpredictable flight (e.g., zigzagging, spinning)

(Humphries and Driver, 1970). The first human studies of escape

and its neural correlates used a virtual predator that chased sub-

jects in a 2D maze and examined the shift of activity in the brain

as the threat came closer or went farther away (Mobbs et al.,

2007, 2009). More recent work has used flight initiation distance

(FID), or the distance at which the subject flees from the ap-

proaching threat. FID is a spatiotemporal measure of threat

sensitivity and economic decision-making (Ydenberg and Dill,

1986). In a recent study, Qi et al. (2018) measured a subject’s

volitional fleeing distance when they encounter a virtual pred-

ator. This study was the first to examine escape decisions in hu-

mans and, importantly, showed that different parts of the defen-
sive circuits were engaged for fast- and slow-attacking threats

(Fung et al., 2019; Qi et al., 2018).

Appetitive behaviors: Pursuit and hunting

Several experiments have used virtual ecologies to measure

reward activity. These include foraging for rewards (Bach et al.,

2014; Gold et al., 2015), and chasing prey for reward (Mobbs

et al., 2009). In nature, appetitive behaviors take several forms,

including approach, increased vigor, exploration, stealth, and

sit and wait behaviors associated with surprise attack. Other ex-

amples includemovement strategies when pursuing virtual prey,

including angle of attack (e.g., cutting off corners to reduce

escape time and feinting; Figure 1), place preference, and impul-

sive errors, such as overshooting the prey’s anticipated move-

ments (Mobbs et al., 2009). Using similar 2D environments as

in human studies (Mobbs et al., 2007; Bach et al., 2014), a recent

study with non-human primates showed how the dorsal anterior

cingulate cortex is involved in pursuit predictions, including ve-

locity, prey position, and acceleration (Yoo et al., 2020). Finally,

some studies have taken advantage of virtual reality (VR) to

explore human place preference in 3D environments. This has

been demonstrated across primary (Astur et al., 2014) and sec-

ondary (Astur et al., 2016; Molet et al., 2013) reinforcers, allowing

simple conditioning paradigms to be extended to more realistic

environments.

Dynamic switching, arbitration, and conflict between

circuits

Virtual ecologies allow dynamic switches in behavior. This, of

course, can be measured in conventional task designs (e.g.,

task switching); however, in virtual ecologies, the switches can

be reactive, volitional, or ramped up, providing a unique way to

study the human brain. One example is the active escape task,

where results showed that, when the artificial predator is distant,

increased activity is observed in the vmPFC. However, as the

artificial predator moves closer, a switch to enhanced activation

in the midbrain periaqueductal gray (PAG) is observed (Mobbs

et al., 2007). Arbitration between approach and avoidance has

also been measured using more dynamic paradigms. Bach

et al. (2014) aimed to support well-established animal models

of how approach-avoidance conflict drives anxiety by showing

that subjects exhibited passive avoidance behavior to threats

when foraging for money in a 2D maze. fMRI results implicated

the ventral hippocampus in this passive avoidance behavior,

with lesions resulting in reduced avoidance (Bach et al., 2014).

This was later extended by showing that individuals with amyg-

dala lesions (i.e., two individuals with Urbach-Wiethe syndrome)

and healthy subjects administered lorazepam showed reduced

avoidance of a threat (Korn et al., 2017).

Social behaviors

Human social interaction features rich temporal and spatial dy-

namics. In the case of cooperative behaviors, most prior exper-

imental and computational research has treated the choice to

cooperate or defect as atomic. For instance, Camerer (2003) es-

tablished a canon of rigorously controlled experimental para-

digms where participants make atomic decisions, such as

whether to cooperate or defect in a prisoner’s dilemma game.

However, studies that abstract over the substructure of group

behavior obscure its multi-scale dynamics. More recently, there

has been a trend toward more complex paradigms using
Neuron 109, July 21, 2021 5
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computer game-like virtual ecologies (Janssen et al., 2010;

Mobbs et al., 2013). In this setting, self-interested individuals

cooperate or defect through emergent policies that sequence

lower-level actions. That is, participantsmust sequence primitive

actions like move forward, turn left, etc. to implement their

higher-level strategic decisions, e.g., to cooperate or defect.

Thus, the fine structure of an ecologically valid collective action

problem is determined by coupled interactions between natural

properties of the environment and the actions of other group

members.

Automated classification of behavior
Non-human work in computational ethology has availed itself of

advances in deep learning to extract ethograms from high-

dimensional behavioral data. In humans, similarly, complex be-

haviors can be captured with wearable behavioral sensors and

video (Carreira and Zisserman, 2017; Topalovic et al., 2020)

combined with machine learning, and this technology looks set

to transform this field. More dynamic virtual ecologies provide

amiddle ground, with joystick or mouse input providing relatively

rich behavioral data. Such data would lend themselves to ana-

lyses with machine learning methods, which can discover useful

latent variables that more concisely capture consistent structure

in dynamic behaviors. For example, detailed measures of a sub-

ject’s position and velocity relative to rewarding stimuli could be

used to identify particular reward-guided behaviors (Figure 1).

Moving beyond purely visual worlds, virtual environments

enabling full bodily movement could allow use of video-based

techniques similar to those used in animal work. Use of unsuper-

vised methods could also be particularly interesting when

applied to human data, allowing identification of behavioral pat-

terns that are not easily detectable by human observers. Further-

more, methods linking behavioral data to other variables of inter-

est (for example, physiological measures or subjective state)

could facilitate identification of particular behaviors that have

relevance to broader constructs, such as anxiety.

A major disadvantage with collection of large datasets is that

much of the data are meaningless. However, when used in com-

bination with dimensionality reduction methods (for example

clustering approaches, as discussed elsewhere in this article),

signal can be separated from the noise to an extent. The

approach we advocate provides two advantages over previous

behavioral measures. First, measurement of targeted behaviors

such as thigmotaxis or pauses and second, the ability to

discover new behaviors that might be indicative of a decision

or emotional state. The former uses naturalistic environments

and rich data to confirm theory-driven predictions, whereas the

latter uses a data-driven approach that can be used to inform

new theory.

However, although automated dimensionality reduction can

help greatly in the face of high-dimensional, unconstrained

data, this does not entirely eliminate the need for theory. First,

the choice of dimensionality reduction technique will be guided

by theoretically motivated questions (e.g., what is the dimen-

sionality of the data? Are we seeking to cluster brief behavioral

motifs or trajectories through an environment?). Second, it will

be necessary to validate extracted behavioral patterns based

on existing theory (e.g., do these newly detected behaviors
6 Neuron 109, July 21, 2021
have meaningful neural correlates?). Finally, theory can be

used to constrain the inferences that can be drawn from new ob-

servations and help identify areas where new theory is needed

(e.g., are automatically identified threat-related behavioral pat-

terns in line with theories about avoidance behavior?).

There are three examples that we believe illustrate the value of

human computational ethology. First, Rosenberg et al. (2021)

showed that more naturalistic environments can produce sur-

prising insights into behavior even without introducing complex,

multidimensional behavioral measures. In this study, mice were

allowed to freely roam through a complex maze in search of

reward, and the authors found that learning about the location

of rewards was approximately 1,000 times faster than in a stan-

dard, two-alternative forced choice task as typically used to

study learning and decision-making. This clearly shows that

behavior in a standard, constrained task is not necessarily reflec-

tive of real-world behavior, which is ultimately what we are trying

to explain. Second, Calhoun et al. (2019) used a data-driven

modeling approach to identify three discrete behavioral states

in Drosophila during courtship and were able to identify neural

systems supporting behavioral state switching. These behav-

ioral states were not hypothesized a priori and would not have

been visible under more constrained conditions. This demon-

strates that using naturalistic behavior can identify behaviors

that would simply not be identified otherwise. Finally, Stringer

et al. (2019) combined data-driven parsing of high-dimensional

natural behaviors and neural activity in mice to demonstrate

that a large proportion of neural activity across the cortex is

linked to behavioral patterns. This shows that neural signals

that may otherwise be considered noise can, in fact, be linked

clearly to behavior, a finding that emerges by virtue of a data-

driven approach using multidimensional, naturalistic behavior.

We believe these studies show that (1) naturalistic behavior

can be qualitatively different from that seen in constrained tasks,

(2) data-driven analysis of naturalistic behavior can identify novel

behavioral states, and (3) combining measures of behavior and

neural activity in naturalistic environments can provide insights

into the role of neural systems that would not be seen otherwise.

Drawing parallels with human avoidance, (1) it is possible that

naturalistic avoidance decisions are qualitatively different from

those seen in constrained avoidance tasks, (2) escape may

involve key behavioral states that would only be visible through

data-driven analysis of high-dimensional behavioral data, and

(3) variability in neural activity may be linked to these behavioral

states during escape.

Hybrid approaches: Preprogrammed and automatic
classification
Validating machine learning methods

Despite the upsides of automated methods, even in non-human

computational ethology, some analyses, such as syllable

identification and segmentation in bird song, remain difficult to

fully automate, and often hand coding and simple preprog-

rammed approaches remain the gold standard (Mets and Brai-

nard, 2018). The results of automated machine learning models

can be validated using traditional methods, but automated

methods, such as unsupervised learning, can also help investi-

gators identify features of behavior they may have missed using
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traditional methods. In cases such as these, a fruitful approach is

to open a dialog between traditional and automated methods,

called ‘‘human-in-the-loop’’ or ‘‘interactive’’ machine learning

(Holzinger et al., 2019). In this framework, input from a human

user is utilized to select or provide feedback to aspects of a

model or learning algorithm, resulting in performance that ad-

heres better to domain-specific expertise. The results produced

by these models can give the human user clues regarding fea-

tures they were not aware of, expanding their domain-specific

expertise, which can then be fed back into the model or algo-

rithm. Notably, this approach has been advocated as a training

method for human grandmasters in games such as chess and

Go (Kasparov, 2018).

Using deep neural networks to develop better virtual

ecologies

A limitation of the current virtual ecologies is that they consist of

preprogrammed environments whose realism is questionable.

For example, some virtual ecologies require subjects to interact

with virtual agents whose behavior does not necessarily reflect

known strategies used by real agents (Yoo et al., 2020). Hybrid

environments are possible, where real agents interact with

each other, but the environments in which they interact are im-

poverished with respect to the information they would encounter

and used to guide behavior in more naturalistic scenarios (Tsut-

sui et al., 2019).

One issue with more naturalistic task environments is the lack

of control over properties of the stimuli and information in these

environments. Indeed, in naturalistic settings, it is not always

clear what the relevant properties are in terms of guiding

behavior (Hamilton and Huth, 2018; Patterson, 1974; Sonkusare

et al., 2019) because naturalistic stimuli are nonparametric and

complex (Geisler, 2008). By pairing insights from ecological psy-

chology with the relatively new tools provided by deep neural

networks, investigators can discover the properties of natural-

istic stimuli relevant for behavior as well as parameterize them,

enabling construction of more realistic virtual ecologies whose

properties can be controlled precisely. Recent work on auto-

mated, unsupervised environment design for reinforcement

learning agents may allow virtual ecologies to be defined without

experimenter input (Dennis et al., 2020).

Feature learning methods can help identify such variables by

extracting higher-order features of environments that reliably

differ between task conditions using artificial neural networks

(ANNs; Dosovitskiy et al., 2015). Recent work has argued that

ANNs, rather than explicitly representing features in their environ-

ment, implicitly learn the structure of their environment that corre-

sponds to task-appropriate actions (Hasson et al., 2020); this

work lends further credibility to use of ANNs for identifying

higher-order latent variables in naturalistic stimuli. Deep genera-

tive models, such as generative adversarial networks (GANs;

Goodfellow et al., 2014) and variational autoencoders (VAEs;

Doersch, 2016) can be used to construct generative models of

naturalistic stimuli, such as images, audio, videos, and even

task-specific video game environments (Li et al., 2019; Yan et

al., 2016), which can then be sampled. These tools are already be-

ing used for generation of naturalistic audio stimuli in the animal

vocalization community (Sainburg et al., 2019). New methods

for feature-specific guidance of the output of these deep genera-
tivemodels can provide investigators with precise control over the

statistics and dynamics of the higher-order latent variables rele-

vant for behavior (Brookes et al., 2020; Lee and Seok, 2019).

Linking behavioral ethograms to neural circuits
Computational ethology provides tools to generate ethograms

(representations of different types of behavior over time; Figure 2)

with great accuracy and ease. Ethograms provide a detailed rep-

resentation of the frequency of different behaviors over time; for

example, in an avoidance task, we may wish to identify patterns

of danger anticipation and escape behavior in response to envi-

ronmental threat.With computational methods, we can automat-

ically generate an ethogram describing how different behaviors

emerge over the course of the task. The temporal information

embedded within ethograms makes them ideal candidates for

linking to unfolding neural events. This presents a new challenge,

however: how can we optimally map these detailed behavioral

observations onto high-dimensional data provided by neuroi-

maging?

Multivariate decoders (Haxby et al., 2001; Kriegeskorte and

Douglas, 2019) have great potential when we wish to identify

distributed patterns of brain activity or connectivity associated

with specific behaviors. Given behavioral labels taken from etho-

grams, multivariate classifiers may be trained to identify neural

patterns associated with distinct behaviors. This would then

permit identification of distinct, distributed patterns of activity

associated with specific behavioral patterns emerging from

naturalistic behavior in a similar way to previous work relating

activation measured using fMRI to naturalistic movie stimuli

(Spiers and Maguire, 2007) or continuous speech (Willems

et al., 2016). Alternatively, for more hypothesis-driven work, joint

brain-behavior modeling approaches may be effective (Turner

et al., 2019). These methods rely on a single pre-specified model

that accounts for behavioral and neural data, accounting for their

covariance through a hierarchical parameter structure, with

shared parameters at the top level constraining the two mo-

dalities.

Encoding models (Kay et al., 2008) predict each channel of

measured brain activity from external variables. They, too, could

provide an effectivemethod for identifying how brain activity cor-

responds to complex behavior. Alternatively, given a rich charac-

terization of behavioral patterns, decoders could be trained on

behavior to predict associated neural states, in line with work

in non-human animals (Clemens et al., 2015).

A complementary multivariate method that could link etho-

grams to neural data is representational similarity analysis

(RSA; Kriegeskorte et al., 2008). RSA characterizes the repre-

sentation in each brain region by means of a representational

dissimilarity matrix that reveals how dissimilar the activity pat-

terns are for each pair of experimental conditions. RSA could

help establish relationships between complex behavioral de-

scriptions and high-dimensional response patterns with minimal

need for fitting of parameters that define the relationship be-

tween each channel of measured brain activity and each

behavior as needed when using encoding and decoding models

(Kriegeskorte and Douglas, 2019).

A promising avenue toward reducing the number of states to

be considered is clustering of behavioral and neural data. Tools
Neuron 109, July 21, 2021 7



Figure 2. Steps in automated analysis and
modeling of natural behavior
Shown is an example of how software can mea-
sure human behavior in a 2D or 3D environment.
This occurs in several stages, including tracking
the movements, action classification, and
behavior analysis (Anderson and Perona, 2014).
Starting from the top left: the subject performs a
task where they learn about safe patches and
where rewards of high or low value will appear.
Such a task should result in place preference or
aversion. The software occurs in several stages,
including detection, tracking of the movements,
action classification, and behavior analysis (An-
derson and Perona, 2014; Dankert et al., 2009).
This will result in an ethogram that will illustrate the
different behaviors of pausing, thigmotaxis,
movement away, and so forth. The behaviors can
then be used for correlation with neural activity or
subjective reports and questionnaire data. Finally,
these data can be used to inform or create
computational accounts of the behavior.
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from computational ethology already constitute a form of clus-

tering, typically identifying combinations of actions that consti-

tute specific behaviors, resulting in detailed ethograms. In a

similar vein, clustering methods have been applied to fMRI (Allen

et al., 2014) and magnetoencephalography (MEG) data (Baker

et al., 2014) to identify recurrent patterns of functional connectiv-

ity or activity, demonstrating that the brain cycles through a

limited number of neural states. Exploring relationships between

recurrent behavioral and neural states could aid with identifica-

tion of robust associations between brain and behavior.
Linking ethograms and neural circuits to computational
models
Ultimately, we would like to have computational models that

explain the information processing performed by brains and pre-

dict neural and behavioral activity (Kriegeskorte and Douglas,

2018). Reinforcement learning algorithms are commonly divided

into two categories: model-free (MF) andmodel-based (MB). MF

learning gradually updates cached value estimates retrospec-

tively from experience, and MF control uses those value esti-

mates for decision-making. MF learning is associated with algo-

rithms like temporal-difference learning (Sutton and Barto, 1998)

and Q-learning (Watkins and Dayan, 1992). In contrast, MB algo-

rithms calculate prospectively, for instance, by simulating
8 Neuron 109, July 21, 2021
possible future states (as in replay and

preplay; Mattar and Daw, 2018; Pfeiffer

and Foster, 2013; Wise et al., 2020).

Applying computational models to dy-

namic and unconstrained behaviors pre-

sents a new challenge: in terms of deci-

sion-making, we are now faced with a

series of complex decisions uncon-

strained in time and reflected in behavior

more elaborate than a button press. For

example, human tasks that depend on

multi-step decision trees typically focus

on a single initial decision point at the
start of the tree, with a decision made once per trial (Daw

et al., 2011; Momennejad et al., 2017). When generating richer

behavioral datasets, virtual ecologies make such models more

difficult to test in relation to behavior. However, recent advances

in deep reinforcement learning (RL) algorithms have created the

opportunity for modeling complex behavior in virtual ecologies

(Mnih et al., 2015). This is especially true in the MF case but

now shows promise for incorporating MB algorithms as well

(Schrittwieser et al., 2020).

In one notable example, artificial agents learned through

reinforcement learning to play a first-person shooter computer

game with realistic physics and complex objectives involving

competition and teamwork (capture the flag) (Jaderberg

et al., 2019). This was a computer game played by simulated

agents, so in principle, the researcher could have full experi-

mental access to any internal variable of the system. How-

ever, in practice, the long timescale and high dimensionality

of the generated dataset meant that computational ethology

methods were still necessary to analyze the resulting agent

behavior. In particular, the authors employed an unsupervised

computational ethology analysis inspired by Wiltschko et al.

(2015). The results showed that internal representations of

important game events like teammate following and home-

base defense emerged as a result of reinforcement learning

in this environment, suggesting the significant extent to which
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the agents come to ‘‘understand’’ these game-related

concepts.

Multi-agent deep reinforcement learning algorithms have also

been applied to model the cooperation behaviors of groups in

mixed-motivation settings (Foerster et al., 2018; Leibo et al.,

2017; Lerer and Peysakhovich, 2018; Perolat et al., 2017). This

line of work extends classical game-theoretic models based on

matrix game formulations (Camerer, 2003) to capture complex

spatiotemporally extended virtual ecologies. ‘‘Rational’’ (selfish)

agent models are no better at cooperating in virtual ecologies

than they are in matrix games. For example, Perolat et al.

(2017) studied a virtual ecology designed to model common-

pool resource appropriation (Janssen et al., 2010). As in the hu-

man studies, where individuals could not communicate (Janssen

et al., 2014), they found that failures of cooperation yielded a

tragedy of the commons, where overuse of resources degraded

the environment to mutual detriment. In other circumstances,

they found spontaneous emergence of exclusion behaviors

and inequality (Perolat et al., 2017). Another study measured

proxemics (i.e., distance to conspecifics) and preferences for

different individuals that emerged from reinforcement learning

in mixed-motivation scenarios (McKee et al., 2020). This

approach, underpinned by models derived from multi-agent

reinforcement learning research, holds promise to uncover inter-

actions between the fine spatiotemporal structure of behavior

and its strategic content that are not easily seen in traditional

paradigms.

Use of complex behavioral measures will require a move

away from models of simple choice likelihood based on

the value of individual options, as is common in standard

decision-making tasks, toward models that make predic-

tions about more complex ongoing aspects of locomotor ac-

tivity. Modeling approaches to more ecologically realistic

behaviors have been developed, for example, using compu-

tational models of reward-guided place preference-like

behavior (Wu et al., 2018) or threat-guided place aversion

(Wise and Dolan, 2020) in 2D environments; however, these

have focused on relatively coarse-grained trial-by-trial

behavioral measures of location. Fully explaining behavior

in these environments will require modeling not only position

on a 2D grid but also motion measures, such as velocity

and acceleration. In essence, the action space for modeling

becomes larger and more complex. Additionally, it will be

necessary to determine the optimal level of granularity for

behavioral outcome measures. However, despite this added

complexity, these rich measures may greatly improve our

behavioral models. Additionally, unconstrained virtual ecolo-

gies naturally result in richer and more varied behaviors, a

characteristic that provides more flexibility when designing

experiments to elicit behavioral patterns that will differen-

tiate candidate models (Palminteri et al., 2017).

The uses and future of VR
2D environments provide simple and clear ways to provide the

subjects with task-relevant information that may not be visible

from a first-person point of view. On the other hand, in some cir-

cumstances, the perceptual uncertainty provided by a 3D envi-

ronment could be useful. For example, given that 3D environ-
ments most accurately represent our perception of the real

world, they increase the ecological validity of the task while

also allowing identification of behavioral dynamics, including

intermittent locomotion and eyemovements. To strengthen con-

nections between behavioral research with human participants

and its counterpart with artificial agent participants, it is some-

times even helpful to simulate, within a 3D environment, a sce-

nario where the agent stands in front of a flat screen to perform

a task. This allows virtual ‘‘eye movements’’ on the 2D environ-

ment projected within the simulated 3D environment (Leibo

et al., 2018). Furthermore, 3D environments where aspects of

the world are obscured from view encourage the subjects to

build and use an internal model of their environment rather

than relying on what is directly in front of them (Wayne

et al., 2018).

Immersive VR technology has moved forward significantly in

the last decade. Its use in human neuroimaging and psycholog-

ical experiments has been revolutionary because it provides a

more enriched and naturalistic approach to computerized envi-

ronments (Bohil et al., 2011; Reggente et al., 2018; Figure 3). As

with simple 2D environments, defensive behaviors can be

measured, including thigmotaxis, place aversion, and escape.

As VR becomes more realistic and feasible (for example, with

smaller headsets equipped with improved eye tracking and pu-

pillometry capability) and integrated with mobile intracranial

electroencephalogram (iEEG; Topalovic et al., 2020), MEG,

and fMRI hardware (Figure 3), there will be a need to under-

stand how to best use this technology. Limitations of the im-

mersive experience in the MRI scanner, however, are a major

challenge, given the absence of body-based cues related to

vestibular, motor, and somatosensory input. Several creative

ways around these limitations have begun to emerge, including

use of 3D glasses and VR training outside of the scanner. For

example, Huffman and Ekstrom (2019) used VR outside of the

MRI scanner to train people in enriched (on a treadmill), limited

(using a joystick and head-mounted display), and impoverished

(joystick only) environments, where their goal was to spatially

navigate a virtual large-scale environment. After training, sub-

jects were placed in an MRI scanner, where they performed a

‘‘judgement of relative direction’’ task, showing that body-

based cues influenced spatial navigation. Full immersion in a

virtual environment did not result in any behavioral or neural dif-

ferences between conditions and proved the hypothesis that

body-based cues are not necessary for retrieval of spatial infor-

mation related to large-scale environments, a hypothesis that

would be difficult to test without VR. Numerous other studies

have shown that VR using desktop computers, head-mounted

displays, and other technologies can be used to study several

aspects of human cognition and related neural mechanisms

(Ekstrom et al., 2003; Jacobs et al., 2013; Chrastil et al.,

2015; Diersch and Wolbers, 2019; Hartley et al., 2003).

Although several aspects of real-world human behavior seem

to be modeled effectively in VR (Huffman and Ekstrom, 2021;

Chrastil and Warren, 2015), there may be certain cognitive abil-

ities that do not transfer as well in VR. For example, the type of

learning strategy used to accomplish a spatial navigation task

and transfer of this knowledge to novel situations may be

altered in VR compared with the real world (Clemenson et al.,
Neuron 109, July 21, 2021 9
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Figure 3. Example of how VR can be used to create virtual ecologies that measure naturalistic behaviors in participants with chronically
implanted electrodes
(A–C) X-ray image (A) and MRI (B) of an example participant with a chronically implanted electrode with four contacts (red crosses) in the temporal lobe for iEEG
recording, during which ambulatory VR and full-body motion capture (C) can be integrated (Stangl et al., 2021).
(D) Example of how VR can be used to create virtual ecologies that measure behaviors similar to those observed in rodents, e.g., thigmotaxis (Walz et al., 2016)
and movement in the EDM (Biedermann et al., 2017).
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2020; Hejtmanek et al., 2020). It will thus be important for future

studies to determine the boundary conditions where reality can

and cannot be modeled effectively with immersive VR tech-

nologies.

Evidence suggests that some of these challenges may

become less prominent as the level of immersion continues

to improve and full vestibular, motor, and somatosensory in-

puts are present (Huffman and Ekstrom, 2021; Hejtmanek

et al., 2020). Recently, Topalovic et al. (2020) combined fully

immersive VR technologies with full body and eye tracking as

well as biometrics (e.g., heart rate, respiration, and galvanic

skin response) in participants implanted with chronic deep

brain devices capable of recording iEEG activity that is unsus-

ceptible to motion-related artifacts. One recent study used

combined immersive VR and iEEG recordings in moving sub-

jects to understand the neural representations of actual phys-

ical space during memory formation and retrieval (Aghajan

et al., 2019). Future research studies of a similar nature can

use this technology to record synchronized behavioral and neu-

ral data from a wide range of brain structures (e.g., amygdala,

hippocampus, and vmPFC) in naturally behaving humans.

This technology can also be integrated with augmented reality

(AR) headsets that allow for objects/events/agents to be super-

imposed onto the real-world (Topalovic et al., 2020). One recent

study used full-body motion capture combined with on-body

world-view cameras and eye tracking in an environment shared

with others to investigate social neural mechanisms of location
10 Neuron 109, July 21, 2021
encoding (Stangl et al., 2021; Figures 3A–3C). These studies

open up exciting opportunities for applying computational etho-

logical methods to high-resolution behavioral data captured dur-

ing naturalistic experiences in social scenarios within real, virtual,

or augmented environments. Use of iEEG in participants with

temporary deep brain electrodes (e.g., in the epilepsymonitoring

unit) combined with biometric recordings is also primed for VR

use (Yilmaz Balban et al., 2021). Further, with creation of move-

able optically pumped magnetometer (OPM)-MEG (Boto et al.,

2018), providing electrophysiological measurements at milli-

second resolution, there is promise in combining VR with

spatially and temporally high-resolution brain imaging on a wider

population of subjects not limited to only those who have im-

planted brain electrodes.

A small but accumulating set of VR studies are beginning to

demonstrate how VR can be used to study fear and anxiety.

Traditionally, it has been difficult to expose subjects to realistic

threats in the lab, and instead studies have typically relied on

painful stimuli, such as electric shocks. In contrast, VR has

permitted assessment of common fears, such as height and

public speaking, in the lab (Gromer et al., 2019; Stupar-Ruten-

frans et al., 2017). Virtual versions of the elevated plus maze

(EPM) have been used in humans, and, like rodents, high-anx-

iety individuals show increased avoidance of open arms (Bie-

dermann et al., 2017). Others have shown that VR can be

used to elicit anxiety in flight phobics (M€uhlberger et al.,

2001). Interestingly, VR can have therapeutic effects in flight



Box 2. Implications for psychiatric populations and research domain criteria (RDoCs)

Movement in psychiatric disorders. The emergence ofML techniques provides a new avenue fromwhich to study a variety of

complex movements that capture behaviors that, until now, have been difficult to measure. This, in turn, could present unique

opportunities for identifying novel markers of mental health problems. Similar approaches have already shown promise in prior

studies, demonstrating subtle behavioral signatures of mental health problems. For example, inspired by animal models, re-

searchers have shown that thigmotaxis is higher in individuals with social phobia compared with healthy control individuals

(Walz et al., 2016). Movement kinetics have also been used to detect altered movement patterns in autism (Cook et al.,

2013) and may be used to detect prodromal markers of psychiatric conditions. These early studies demonstrate that taking

a more naturalistic approach to the study of behavior, with rich indices of the movements human subjects make, can facilitate

identification of markers of disorder that could not be seen otherwise.

New transdiagnostic models of psychiatric disorders. The benefits of computational ethology go beyondmovement-based

markers of psychiatric disorder. In recent years, computational psychiatry has begun to demonstrate how dysfunction in

learning and decision-making processes can result in symptoms ofmental health problems. However, these studies have relied

on highly constrained, artificial tasks with limited behavioral measures. As detailed in other sections, computational ethology

has the potential to bring new insights into learning and decision-making through richer andmore natural behavioral measures.

This deeper understanding of how humans learn about and act within their environment will naturally provide further targets for

studies of how these processes go awry in psychiatric disorders. As an example, prior work has considered the importance of

MB planning in compulsive symptoms, showing that individuals high in these traits have difficulty in learning a model of the

world and in using this learned model to guide behavior (Gillan et al., 2016; Sharp et al., 2020). However, tasks used to assess

these processes rely on simplistic task structures with only a few task states. Using methods from computational ethology

could encourage development of newmodels that are able to explain the relationship betweenMBandMF control inmore com-

plex and naturalistic environments, which, in turn, would provide new targets for studies investigating dysfunction in these pro-

cesses and its association with symptom dimensions such as compulsivity. This may take inspiration from artificial intelligence,

for example, where planning in complex environments has received a great deal of attention (Schrittwieser et al., 2020; Silver

and Veness, 2010). As a result, new models of dysfunction could be developed that account for behavior that only emerges in

these more naturalistic virtual environments.

RDoCs.RDoCs are a framework within which to investigate and classify mental disorders, focusing on systems that span tradi-

tional diagnostic categories (Insel et al., 2010). The ability to detect andmeasure new behaviors will also advance the objectives

of the RDoCs, where one goal is tomeasure a full range of behaviors and link them to health and disorder. For example, although

the RDoC negative valance systems matrix suggests that researchers should measure freezing, risk assessment, approach,

avoidance, and escape, there are few existing paradigms that can evoke these behaviors in the truest sense. It follows that

gaining methods to measure these behaviors in human subjects will aid translation of animal models to humans and identifi-

cation of human behaviors that can also be evoked in animals, which could have benefits for development of new pharmaco-

logical therapies. Drug development in psychiatry has largely stalled (Brady et al., 2019), and there have been numerous exam-

ples of drug candidates that were apparently efficacious in animals but failed to showbenefits in human trials, likely as a result of

animal models of disease not truly representing the conditions they intend to (Grabb et al., 2016). Computational ethology and

its focus on naturalistic behaviors will allow proper measurement of key behaviors, highlighted in the RDoCs, across humans

and animals and, in turn, could facilitate drug development.

ll
Perspective

Please cite this article in press as: Mobbs et al., Promises and challenges of human computational ethology, Neuron (2021), https://doi.org/10.1016/
j.neuron.2021.05.021
and spider phobics (M€uhlberger et al., 2003; Shiban et al.,

2015). Similarly, exposure therapy in VR has begun to see use

in treating PTSD in war veterans. Rizzo et al. (2010) developed

an exposure therapy system for veterans of Iraq and

Afghanistan, combining realistic 3D environments in VR with

physiological measurements, such as the galvanic skin

response. The same team later employed this system in

conjunction with fMRI to monitor improvements in cerebral

function in veterans undergoing treatment for PTSD (Roy

et al., 2010). Finally, Yilmaz Balban et al. (2021) have shown

that exposure to virtual threats such as scary heights can elicit

increases in autonomic arousal. Further, using iEEG, the au-

thors show higher gamma activity in the insula for

virtual heights compared with no-height control conditions.

These studies show how VR can elicit autonomic and neural re-

sponses to threat and show promise for implementing the

behavioral measures advocated by computational ethology.
Conclusions
Introducing methods from computational ethology to human

neuroscience promises to help us uncover novel behavioral as-

says and better understand the dynamic nature of the human

brain and how it might function in the real world. Further, through

extraction of individualized ethograms from tasks using virtual

ecologies, we can link patterns of behavior in naturalistic envi-

ronments to brain states, potentially revealing links between

neural circuits and behavior that are not observable with current

methods. Current experimental paradigms are restricted to spe-

cific processes thought to be important by the researcher and,

therefore, miss behavioral characteristics (in healthy function

and psychiatric disorders) that might be essential for under-

standing brain function in naturalistic environments. The ap-

proaches laid out in this paper enable quantification of behavior

and its disruption in a variety of psychiatric conditions at a

behavioral and neural level. Unsupervised methods of behavior
Neuron 109, July 21, 2021 11
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classification may identify novel patterns of behavior that are

diagnostic of particular symptom clusters (Box 2). Although there

are challenges to overcome, approaches advocated by compu-

tational ethology (i.e., unsupervised quantification of behavior)

are an exciting and powerful way to engage the dynamics of nat-

ural cognition in human neuroscience.
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